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Abstract

When modeling the classical Kuramoto model, one of the key features is the tendency
to synchronize. Accordingly, the most well-adopted choice of the coupling function is the
sine function. Due to the oddness of the sine function, the synchronized frequency would
be the average of all the natural frequencies. In this article, we study the synchronization
behaviors of the Kuramoto model with a pure competition coupling function. Namely,
instead of the sine function, we choose max{0, sin θ} to be the coupling function. This
indicates the relation of pure competition between oscillators. We prove asymptotical
phase synchronization for identical oscillators and asymptotical frequency synchronization
for non-identical oscillators under reasonable sufficient conditions. In particular, under
our sufficient conditions, the synchronized frequency is the maximal frequency of all the
natural frequencies. On the other hand, in the parameter regime which is out of the scope
of the analysis of our theorems, it is possible that the synchronized frequency could be
larger than the maximal frequency of the natural frequencies of all the oscillators. In this
article, we also provide numerical experiments to support the analysis of our theorem and
to demonstrate the aforementioned phenomenon.

1 Introduction

Synchronization phenomenon appears in a variety of natural systems, including pendulum
clocks, triode generators, Josephson junction arrays, circadian rhythms, menstrual cycles,
and fireflies [1, 23, 24, 27].

Among the mathematical models which describe the synchronous behaviors of a collection
of oscillators, the one proposed by Kuramoto [20, 19] has received most attention. The model
is formulated as a system of N ordinary differential equations:

θ̇i(t) = ωi +

N∑
j=1

Γ(θj(t) − θi(t)), i = 1, 2, . . . , N. (1.1)

In this model, {θi(t)}Ni=1 is the set of oscillators, ωi ∈ R is the natural frequency of the i-th
oscillator, and Γ is a continuous and 2π-periodic coupling function. The oscillators are said
to be identical if all natural frequencies are the same, i.e.,

ωi = ωj , for i, j = 1, 2, 3, · · · , N.
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Kuramoto [20] studied the sinusoidal coupling Γ(ϕ) = k sinϕ for some coupling strength
k > 0, which is arguably the simplest and the most tractable case. In the following, we refer

θ̇i(t) = ωi + k
N∑
j=1

sin(θj(t) − θi(t)), i = 1, 2, . . . , N. (1.2)

as the classical Kuramoto model.
In this article, we analyze both phase synchronization and frequency synchronization.

Here are some notation conventions and definitions that we shall use.

Notations. We denote

Θ(t) := (θ1(t), . . . , θN (t)) and Ω := (ω1, . . . , ωN ).

For X = (x1, x2, x3, · · · , xN ) ∈ RN , we define the diameter function as

D(X) := max
1≤i,j≤N

|xi − xj |.

Definition 1.1 (Complete phase synchronization). A solution Θ(t) to the system (1.1) is said
to achieve a complete phase synchronization asymptotically if for any i, j ∈ {1, 2, 3, · · · , N},
there exists nij ∈ Z such that limt→∞(θi(t) − θj(t) − 2nijπ) = 0.

Definition 1.2 (Complete frequency synchronization). A solution Θ(t) to the system (1.1)
is said to achieve a complete frequency synchronization asymptotically if for any i, j ∈
{1, 2, 3, · · · , N}, we have limt→∞(θ̇i(t) − θ̇j(t)) = 0.

For the classical Kuramoto model (1.2), the critical coupling strength [20, 29, 9], bifur-
cation [6], and initial configurations that lead to synchronization [2, 4, 8] have been studied.
It was proved in [4] that if the oscillators achieve complete frequency synchronization, the
synchronized frequency equals the average of all the natural frequencies, i.e.,

lim
t→∞

θ̇i(t) =

∑N
j=1 ωj

N
, for i = 1, 2, 3, · · · , N. (1.3)

Mathematically speaking, this is due to the fact that the sine function is an odd function;
that is, Γ(ϕ) = −Γ(−ϕ). To see this, summing up (1.2) over i = 1, 2, 3 · · · , N , we obtain

lim
t→∞

N∑
i=1

θ̇i(t) =
N∑
j=1

ωj . (1.4)

If there exists ω ∈ R such that limt→∞ θ̇i(t) = ω for i = 1, 2, 3, · · · , N , inferring from (1.4),
we obtain (1.3). From the viewpoint of modeling, the choice of the sine function means that
the leading one would have a tendency to slow down for the trailing ones and the trailing one
would have a tendency to speed up, which indicates that the oscillators have a tendency to
synchronize. This choice of the coupling functions allows a structure of Lyapunov function
for (1.2) which provides a systematic method to analyze the synchronization problem for
(1.2). It turns out that the oddness of the coupling function is crucial for analyses based
on Lyapunov function [8, 16, 28] and the order parameter [2]. Concerning the effect of time
delay, we refer to [17]. For other results, we refer the interested readers to the surveys of
Strogatz [27], Acebrón et al. [1] and Rodrigues et al. [24].
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It is of mathematical interest to study the class of coupling functions that lead to synchro-
nization. For example, Sakaguchi et al. [25] and Ha et al. [12] studied the Kuramoto model
with the phase-lag effect, which involves a non-odd coupling function Γ(ϕ) = k sin(ϕ + α)
for some 0 < |α| < π/2. Coupling functions with bi-harmonics [14, 26, 18, 21, 10, 30] and
higher-order harmonics [5, 7, 11, 22] have also been studied in the literature.

In this article, we investigate the synchronization of a strong competition Kuramoto model
beyond the sinusoidal coupling. That is, we take Γ(θ) = k max(0, sin θ) for some coupling
strength k > 0 as the coupling function. This coupling function is piecewise differentiable
and non-odd. With this choice of the coupling function, the model (1.1) is rewritten as

θ̇i(t) = ωi + k
N∑
j=1

max{0, sin(θj(t) − θi(t))}, i = 1, 2, · · · , N. (1.5)

We refer this model as the strong competition Kuramoto model (SC Kuramoto model) after-
wards.

Remark 1.3. It is not hard to check, for both (1.2) and (1.5), that if the oscillators achieve
the complete phase synchronization, then they must be identical oscillators, i.e., ωi = ωj , for
i, j = 1, 2, 3, · · · , N.

In the SC Kuramoto model, the i-th oscillator is affected by the j-th oscillator only when
the phase of the j-th oscillator is “in front of” the phase of the i-th oscillator. This type of
dynamic coupling has been considered by Yang et al. [31, 32] and Ho et al. [15] recently. Yang
et al. [31, 32] are motivated by the phenomenon of the off-the-average synchronized frequency
in several natural systems, such as the finger-tapping experiment and the applause of the
audiences. However, they conducted numerical experiments without rigorous mathematical
analysis. Ho et al. [15] develop a novel experimental assay that enables direct quantification
of synchronization dynamics within mixtures of oscillating cell ensembles, for which the initial
input frequency and phase distribution are known. Their results reveal a “winner-takes-it-
all” synchronization outcome, i.e., the emerging collective rhythm matches one of the input
rhythms. As shown in our main theorems, we use rigorous mathematical analysis to show
that the synchronized frequency is the largest natural frequency.

Theorem 1.4. Assume D(Ω) = 0. Let Θ(t) be a solution to (1.5) with D(Θ(0)) < π,
then limt→∞D(Θ(t)) = 0; that is, the oscillators achieve complete phase synchronization
asymptotically.

Theorem 1.5. Assume k > D(Ω)/ sin δ for some δ ∈ (0, π/2) and

ω1 ≥ ω2 ≥ · · · ≥ ωN . (1.6)

Let Θ(t) be a solution to (1.5) with D(Θ(0)) < π − δ, then

lim
t→∞

θ̇i(t) = ω1 = max{ω1, ω2, · · · , ωN} for i = 1, 2, 3, · · · , N. (1.7)

In other words, the oscillators achieve a complete frequency synchronization asymptotically,
and the synchronized frequency is the largest natural frequency.

Remark 1.6.
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(a) Under the assumption of Theorem 1.5, inferring from the well-ordering lemma (see
Lemma 3.3), we see that no oscillator would be “in front of” θ1(t) for all t ≥ (π −
2δ)/(k sin δ −D(Ω)). This implies the synchronized frequency of θ1 would be ω1, which
implies (1.7).

(b) For the classical Kuramoto model (1.2), it is known that k > D(Ω)/(N sin δ) suffices to
achieve frequency synchronization [4]. So the requirement for the coupling strength in
Theorem 1.5 is greater than that in the classical Kuramoto model. Nevertheless, this is
unavoidable. Consider N oscillators with ω1 = 0, ω2 = · · · = ωN = ω < 0, θ1(0) = π/2,
and θ2(0) = · · · = θN (0) = 0. We must have k ≥ |ω| = D(Ω) to ensure frequency
synchronization.

(c) For the SC Kuramoto model, in the parameter regime which is out of the scope of the
analysis of our theorem, it is possible that the synchronized frequency could be larger
than the maximal frequency of the natural frequencies of all the oscillators. See the
example provided in Section 4.3.

Briefly speaking, identical oscillators achieve complete phase synchronization asymptoti-
cally if the diameter of initial phases is strictly less than π; while the non-identical oscillators
achieve complete frequency synchronization asymptotically if the diameter of initial phases
is less than π − δ and the coupling strength is larger than D(Ω)/ sin δ. Moreover, the syn-
chronized frequency equals the maximal natural frequency for the non-identical oscillators.

Our analysis relies partially on the diameter function, which is a common technique in
the literature [4, 3, 12, 17]; see Lemma 2.1. Since the coupling function in (1.5) is neither
odd nor analytic, methods based on the  Lojasiewicz gradient inequality, Lyapunov function
[8, 13] and the order-parameter [2] cannot be applied. The proof of Theorem 1.4 is based on
the sector trapping property described by Lemma 2.1. Besides employing Theorem 1.4, the
proof of Theorem 1.5 relies on a well-ordering property of the solutions of (1.5) described
in Lemma 3.3, a refinement of Lemma 2.1, which shows that after sufficiently long time,
oscillators with larger natural frequencies will be ahead in phase of those with smaller natural
frequencies.

The rest part of this article is organized as follows. We prove Theorem 1.4 in Section 2. In
Section 3, we prove the well-ordering property and Theorem 1.5. In Section 4, we demonstrate
numerical experiments for (1.5), and we make a comparison between the classical Kuramoto
model (1.2) and the SC Kuramoto model (1.5).

2 Identical Oscillators for SC Kuramoto Model

In this section, we consider the SC Kuramoto model (1.5) with identical oscillators and give
a proof to Theorem 1.4. Theorem 1.4 demonstartes that if the initial phases are confined in
a half circle, then the oscillators achieve phase synchronization.

We start with the following lemma. It states that the oscillators will concentrate in a
small region for large coupling strength. Similar lemmas have been used in the literature [3,
12, 16, 17].
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Lemma 2.1 (Sector trapping lemma). Assume k > D(Ω)/ sin δ for some δ ∈ (0, π/2). Let
Θ(t) be a solution to (1.5) with D(Θ(0)) ≤ π − δ, then D(Θ(t)) ≤ δ for

t ≥ T0 :=
π − 2δ

k sin δ −D(Ω)
. (2.1)

Proof. Notice that π − δ > δ and D(Θ(0)) ≤ π − δ. If at some time s ≥ 0, we have
D(Θ(s)) ∈ (δ, π − δ) for any i, j ∈ {1, 2, 3, · · · , N} such that θi(s) − θj(s) = D(Θ(s)), then
we see that

θj(s) ≤ θℓ(s) ≤ θi(s), for ℓ = 1, 2, · · · , N,

and

θ̇i(s) − θ̇j(s) = ωi − ωj − k

N∑
ℓ=1

sin(θℓ(s) − θj(s)) ≤ D(Ω) − k sin(θi(s) − θj(s)).

Since sin(θi(s) − θj(s)) > sin δ for θi(s) − θj(s) ∈ (δ, π − δ) and D(Ω) < k sin δ, we see that

θ̇i(s) − θ̇j(s) < D(Ω) − k sin δ < 0.

Hence, D(Θ(t)) decreases at a rate faster than D(Ω) − k sin δ. This proves Lemma 2.1.

Now, we are in a position to prove Theorem 1.4.

Proof of Theorem 1.4. For any δ > 0, by Lemma 2.1, D(Θ(t)) ≤ δ for t ≫ 0. Hence,
limt→∞D(Θ(t)) = 0.

3 Non-identical Oscillators for SC Kuramoto Model

In this section, we analyze the the SC Kuramoto model for non-identical oscillators. Theo-
rem 1.5 shows that if the initial phases are confined in a half circle and the coupling strength
is large, then the oscillators achieve frequency synchronization asymptotically.

For a real-valued function f defined on an open set U ⊆ R, we define its right derivative
(if the limit exists) by

D+f(x) = lim
h↓0

f(x + h) − f(x)

h
, ∀x ∈ U.

The following proposition will be used in this section. The proof of the proposition is
omitted since it is straightforward.

Proposition 3.1. Let U ⊆ R be an open set and f1, . . . , fn : U → R be continuous functions
having right derivatives. Define F (x) = max1≤i≤n fi(x). Then, we have

D+F (x) = max
i∈Ix

D+fi(x), ∀x ∈ U,

where Ix := {1 ≤ i ≤ n | F (x) = fi(x)}.

As mentioned in the introduction, the proof of Theorem 1.5 relies on Lemma 3.3, a well-
ordering property of the solutions of (1.5). To prove Lemma 3.3, we prepare the following
lemma.
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Lemma 3.2. Let Θ(t) be a solution to (1.5). Assume, for some t0 ≥ 0, D(Θ(t)) ≤ π/2 for
all t ≥ t0. If ωi > ωj, then

θi(t) ≥ θj(t)

for

t ≥ t0 + max

{
0,

θj(t0) − θi(t0)

ωi − ωj

}
.

Proof. Claim: If θi(t) − θj(t) > 0 at some moment t1 ≥ t0, then θi(t) − θj(t) > 0 for all
t ≥ t1.

We shall use proof by contradiction to verify the claim. Suppose the claim does not hold.
Let t = t2 > t1 be the first moment such that θi(t) = θj(t), i.e.,

θi(t) − θj(t) > 0 for t ∈ [t1, t2) and θi(t2) − θj(t2) = 0. (3.1)

Inferring from (3.1), we have
θ̇i(t2) − θ̇j(t2) ≤ 0. (3.2)

However, taking the difference of the i-th and j-th equations of (1.5) at t = t2, we obtain

θ̇i(t2) − θ̇j(t2) = ωi − ωj > 0,

which violates (3.1). This proves the claim.
Next, if θi(t) − θj(t) ≤ 0 for some t ≥ t0, then

θ̇j(t) − θ̇i(t) = (ωj − ωi) + k
N∑
ℓ=1

(
max{0, sin(θℓ(t) − θj(t))} − max{0, sin(θℓ(t) − θi(t))}

)
.

Since
π

2
≥ θℓ(t) − θi(t) ≥ θℓ(t) − θj(t) ≥ −π

2
,

we have
max{0, sin(θℓ(t) − θj(t))} − max{0, sin(θℓ(t) − θi(t))} ≤ 0.

Hence,
θ̇j(t) − θ̇i(t) ≤ ωj − ωi < 0.

This means that the difference of θj and θi decreases at a rate faster than ωi−ωj . The lemma
follows.

Lemma 3.3 (Well-ordering Lemma). Under the assumptions of Theorem 1.5, let Θ(t) be a
solution to (1.5) with D(Θ(0)) ≤ π − δ. Then there exists T∗ ≥ 0 such that, for all t > T∗,
we have

D(Θ(t)) ≤ δ, and (3.3)

θi(t) ≥ θj(t) if ωi > ωj . (3.4)

Proof. Let T0 be as defined in (2.1). By Lemma 2.1, we see that D(Θ(t)) ≤ δ < π/2 for all
t ≥ T0. Applying Lemma 3.2 to every pair (θi(t), θj(t)) with ωi > ωj , we have θi(t) ≥ θj(t)
for

t ≥ T∗ := T0 + max
(i,j):ωi>ωj

max

{
0,

θj(T0) − θi(T0)

ωi − ωj

}
.
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We are now in a position to prove Theorem 1.5.

Proof of Theorem 1.5. Assume, among Ω, there are M distinct natural frequencies

ω1 = ωj1 > ωj2 > · · · > ωjM = ωN .

Without the loss of generality, we may assume ω1 = 0. Partition N oscillators into M groups
Θ(1), . . . ,Θ(M), where all oscillators in the group Θ(m) have the same natural frequency ωjm .
Write

Θ(m) = (θ
(m)
1 , . . . , θ(m)

nm
), m = 1, 2, 3, · · · ,M,

and
∑M

m=1 nm = N , where nm is the number of oscillators with natural frequency ωjm .
By Lemma 3.3, there exists T∗ > 0 such that for any t ≥ T∗, m ∈ {1, 2, · · · ,M − 1},

i1 ∈ {1, 2, · · · , nm} and i2 ∈ {1, 2, · · · , nm+1}, we have

D(Θ(t)) ≤ δ < π/2, (3.5)

θ
(m)
i1

(t) ≥ θ
(m+1)
i2

(t). (3.6)

Therefore, for m ∈ {1, 2, · · · ,M} and i ∈ {1, 2, · · · , nm} and t ≥ T∗, (1.5) reads

θ̇
(m)
i (t) =ωjm + k

m−1∑
m′=1

nm′∑
ℓ=1

sin
(
θ
(m′)
ℓ (t) − θ

(m)
i (t)

)
+ k

nm∑
ℓ=1

max
{

0, sin
(
θ
(m)
ℓ (t) − θ

(m)
i (t)

)}
,

(3.7)

In the following, we prove that the frequency of each oscillator in Θ(m) will converge to 0 by
proceeding a mathematical induction argument on m.

Base case. For m = 1, (3.7) reads

θ̇
(1)
i (t) = ω1 + k

n1∑
ℓ=1

{
0, sin

(
θ
(1)
ℓ (t) − θ

(1)
i (t)

)}
, i = 1, 2, · · · , n1. (3.8)

Since k > 0, by Theorem 1.4, Θ(1)(t) shall achieve a complete phase synchronization asymp-
totically. By passing limit t → ∞ in (3.8), we conclude that limt→∞ θ̇

(1)
i (t) = ω1 = 0 for

i = 1, 2, · · · , n1. This proves the base case.

Induction Step. Let 2 ≤ m ≤ M . Assume limt→∞ θ̇
(m′)
ℓ (t) = 0 for all 1 ≤ m′ ≤ m − 1

and 1 ≤ ℓ ≤ nm′ . Fix any ε > 0. By the above induction assumption, there exists t1 ≥ T∗
such that for all t ≥ t1, 1 ≤ m′ ≤ m− 1 and 1 ≤ ℓ ≤ nm′ , we have∣∣∣θ̇(m′)

ℓ (t)
∣∣∣ ≤ ε

2
. (3.9)

Define
rj(t) = θ̇

(m)
j (t), M(t) = max

1≤j≤nm

rj(t), and m(t) = min
1≤j≤nm

rj(t).

We shall show that limt→∞M(t) = limt→∞m(t) = 0, which implies limt→∞ θ̇
(m)
j (t) = 0 for

j = 1, 2, · · · , nm.
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Assume M(s) ≥ ε for some s ≥ t1. Let i ∈ Is := {1 ≤ j ≤ nm | rj(s) = M(s)}. By (3.7)
and Proposition 3.1, ri(t) is a continuous function, and its right derivative is given by

D+ri(s) = k

m−1∑
m′=1

nm′∑
ℓ=1

cos
(
θ
(m′)
ℓ (s) − θ

(m)
i (t)

)
(θ̇

(m′)
ℓ (s) − ri(s)) + k

nm∑
ℓ=1

∆iℓ(s),

where

∆iℓ(s) := D+ max
{

0, sin
(
θ
(m)
ℓ (s) − θ

(m)
i (s)

)}

=


cos

(
θ
(m)
ℓ (s) − θ

(m)
i (s)

)
(rℓ(s) − ri(s)) if sin

(
θ
(m)
ℓ (s) − θ

(m)
i (s)

)
> 0

max
{

0, cos
(
θ
(m)
ℓ (s) − θ

(m)
i (s)

)
(rℓ(s) − ri(s))

}
if sin

(
θ
(m)
ℓ (s) − θ

(m)
i (s)

)
= 0

0 if sin
(
θ
(m)
ℓ (s) − θ

(m)
i (s)

)
< 0.

Inferring from (3.5), we see that cos
(
θ
(m)
ℓ (s) − θ

(m)
i (s)

)
≥ cos δ > 0. On the other hand,

by the choice of i, we have ri(s) = M(s) ≥ rℓ(s) for ℓ = 1, 2, · · · , nm. We then conclude
∆iℓ(s) ≤ 0. By (3.9) and the assumption M(s) ≥ ε, we have

−3ε

2
≤ θ̇

(m′)
ℓ (s) − ri(s) ≤ −ε

2
.

Therefore,

D+ri(s) ≤ k

m−1∑
m′=1

nm′∑
ℓ=1

cos
(
θ
(m′)
ℓ (s) − θ

(m)
i (s)

)
(θ̇

(m′)
ℓ (s) − ri(s))

≤ −εk

2
(n1 + · · · + nm−1)(cos δ).

Hence, by Proposition 3.1,

D+M(s) = max
i∈Is

D+ri(s) ≤ −εk

2
(n1 + · · · + nm−1)(cos δ) < 0.

This shows that if M(t) ≥ ε, then M(t) decays at a rate faster than

−εk

2
(n1 + · · · + nm−1)(cos δ).

Therefore, M(t) ≤ ε for t ≫ 0. By a similar argument, one can show that m(t) ≥ −ε for
t ≫ 0. Since this holds for any ε > 0 and M(t) ≥ m(t) for all t ≥ 0, we have limt→∞M(t) =
limt→∞m(t) = 0. This proves the induction step. The theorem then follows from the
mathematical induction.

4 Numerical Results

In this section, we present numerical results for (1.5) and compare the synchronization be-
havior of the SC Kuramoto model (1.5) with that of the classical Kuramoto model (1.2).
Note that most authors write k/N for k in the classical Kuramoto model (1.2). In order to
make the comparison, we do not follow this convention.

In this section, all the differential equations were solved numerically by using the solve ivp()

function in the SciPy package with 10−5 relative tolerance. The natural frequencies and the
initial phases were first uniformly generated from [0, 1] and then scaled to satisfy the given
diameter.
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(a) Θ(t). (b) Θ̇(t).

(c) D(Θ(t)) (d) D(Θ̇(t))

Figure 1: Solution of the SC Kuramoto model (1.5) with N = 10, k = 0.1, D(Θ(0)) = 5π/6,
and D(Ω) = 0.

4.1 Identical Oscillators

In Theorem 1.4, we have shown that for the SC Kuramoto model (1.5), if all oscillators
are identical, D(Θ(0)) < π, and k > 0, then they achieve complete phase synchronization
asymptotically. We demonstrate Theorem 1.4 numerically in Figure 1. We consider 10 os-
cillators and set the coupling strength k to be 0.1. Their natural frequencies are 0, and
their initial phases are confined in a 5π/6 arc. This initial condition satisfies the assump-
tions of Theorem 1.4. As suggested by the theorem, the oscillators achieve complete phase
synchronization.

Recall that for the classical Kuramoto model (1.2), if all oscillators are identical and k > 0,
then the oscillators with D(Θ(0)) < π achieve complete phase synchronization asymptotically.
In Figure 2, we compare the convergence speed of the SC Kuramoto model (1.5) with that of
the classical Kuramoto model (1.2). We observe that in terms of both phase and frequency,
the classical Kuramoto oscillators converge faster than the SC Kuramoto oscillators.
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(a) D(Θ(t)). (b) D(Θ̇(t))

Figure 2: Comparison of the convergence speeds of the SC Kuramoto model (1.5) and the
classical Kuramoto model (1.2). We set N = 10, k = 0.1, D(Θ(0)) = 5π/6, and D(Ω) = 0.

4.2 Non-identical Oscillators

In this subsection, we consider non-identical oscillators. Theorem 1.5 shows that for the SC
Kuramoto model (1.5), if k > D(Ω)/ sin δ, then the oscillators with D(Θ(0)) < π− δ achieve
a complete frequency synchronization asymptotically. In Figure 3, we consider 10 oscillators
with D(Ω) = 1 and max Ω = 0. We set the coupling strength k to be D(Ω)/ sin(π/6) + 10−3.
Their initial phases are confined in a 5π/6 − 10−3 arc. This initial condition satisfies the
assumptions of Theorem 1.5. We observe that the oscillators achieve a complete frequency
synchronization asymptotically and the synchronized frequency equals the largest natural
frequency, which is consistent with Theorem 1.5.

Note that under the assumption k > D(Ω)/(N sin δ), the condition D(Θ(0)) < π − δ
suffices to ensure complete frequency synchronization for the classical Kuramoto model (1.2).
Since D(Ω)/ sin δ > D(Ω)/(N sin δ), this hints that the SC Kuramoto model may be harder
to achieve frequency synchronization than the classical Kuramoto model. In Figure 4, we
compare the convergence speed of the SC Kuramoto model (1.5) with that of the classical
Kuramoto model (1.2) when both models are guaranteed to achieve complete frequency syn-
chronization. We observe that the classical Kuramoto oscillators achieve complete frequency
synchronization faster than the SC Kuramoto oscillators.

10



(a) Θ(t). (b) Θ̇(t).

(c) D(Θ(t)) (d) D(Θ̇(t))

Figure 3: Solution of the SC Kuramoto model (1.5) with N = 10, k = D(Ω)/ sin(π/6) +
10−3 ≈ 1.967, D(Θ(0)) = 5π/6 − 10−3 ≈ 2.617, D(Ω) = 1, and max Ω = 0.

(a) D(Θ(t)). (b) D(Θ̇(t))

Figure 4: Comparison of the convergence speeds of the SC Kuramoto model (1.5) and the
classical Kuramoto model (1.2). We set N = 10, k = D(Ω)/ sin(π/6) + 10−3 ≈ 1.967,
D(Θ(0)) = 5π/6 − 10−3 ≈ 2.617, D(Ω) = 1, and max Ω = 0.
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(a) D(Θ(t)). (b) D(Θ̇(t))

Figure 5: Comparison of the SC Kuramoto model (1.5) and the classical Kuramoto model
(1.2). We set N = 10, k = 0.2, D(Θ(0)) = 5π/6 − 10−3 ≈ 2.617, D(Ω) = 1, and max Ω = 0.

In Figure 5, we set k = 0.2 with other parameters unchanged. Since k > D(Ω)/(N sin δ),
the standard model is guaranteed to achieve complete frequency synchronization. However,
since k < D(Ω)/ sin δ, our theorem does not apply. We observe that under this setup, the
classical Kuramoto oscillators achieve complete frequency synchronization asymptotically,
but the SC Kuramoto oscillators do not. This confirms that, compared with the classical
Kuramoto oscillators, it is harder for SC Kuramoto oscillators to synchronize.

4.3 Numerical Results beyond Our Theorems

In this subsection, we provide numerical results that cannot be inferred from our theoretical
results. Firstly, we consider identical oscillators with D(Θ(0)) larger than π. Specifically, we
set N = 10, k = 1, D(Θ(0)) = 15π/8 > π, and D(Ω) = 0. Figure 6 presents the numerical
results. Note that the oscillators achieve both complete phase and frequency synchronization.
Also, the solution satisfies limt→∞D(Θ(t)) = 2π instead of limt→∞D(Θ(t)) = 0.

Secondly, we show that the synchronized frequency can be larger than the largest natural
frequency. For example, suppose N identical oscillators are uniformly distributed on the
circle. That is, ωi = ω and θi(0) = 2iπ/N for all 1 ≤ i ≤ N . Then, it can be checked that

θ̇i(t) = ω + k
∑

1≤j<N/2

sin
2jπ

N
> ω, for i = 1, 2, 3, · · · , N.

In Figure 7, we consider N = 6, k = 0.1, and ω = 0. The result confirms that the synchronized
frequency is 2k sin(π/3) ≈ 0.1732, larger than the maximal natural frequency 0.

Thirdly, we consider non-identical oscillators with k < D(Ω)/ sin δ. In Figure 8, we set
N = 10, k = 0.5, D(Θ(0)) = 5π/6, and D(Ω) = 1. Theorem 1.5 requires k > D(Ω)/ sin δ = 2,
so the theorem does not apply. We observe that the oscillators still exhibit complete frequency
synchronization.
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(a) Θ(t). (b) Θ̇(t).

(c) D(Θ(t)) (d) D(Θ̇(t))

Figure 6: Solution of the SC Kuramoto model (1.5) with N = 10, k = 1, D(Θ(0)) = 15π/8
and D(Ω) = 0.

(a) Θ(t). (b) Θ̇(t).

Figure 7: Solution of the SC Kuramoto model (1.5) with N = 6, k = 0.1, Θ(0) =
(0, π/3, 2π/3, . . . , 5π/3) and D(Ω) = 0.
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(a) Θ(t). (b) Θ̇(t).

(c) D(Θ(t)) (d) D(Θ̇(t))

Figure 8: Solution of the SC Kuramoto model (1.5) with N = 10, k = 0.5, D(Θ(0)) = 5π/6
and D(Ω) = 1.
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