Synchronization of Kuramoto Model **Beyond Sinusoidal Interactions**

Chung-En Tsai and Chun-Hsiung Hsia (National Taiwan University)

For the Kuramoto model with the ReLU-Sin coupling, we provide the first sufficient initial conditions that lead to phase and frequency synchronizations, respectively.

The Kuramoto Model

Challenge and Proof Ideas

The challenge is the lack of oddness

nillatilitatia

National

Taiwan University

中華民國

For $1 \leq i \leq N$,

$$\dot{\theta}_i(t) = \omega_i + \sum_{j=1}^N \Gamma(\theta_j(t) - \theta_i(t)),$$

- ω_i : natural frequency.
- θ_i : phase
- $\dot{\theta}_i$: frequency
- Γ : a 2π -periodic coupling function.

Describe the *collective synchronization* of fireflies, circadian rhythm, Josephson junctions, power grids, etc.

of the coupling function, making Lyapunov-based analyses fail. We ignore the max when $t \gg 0$ by the Order Lemma (informal):

For any $\delta > 0$, if $D(0) < \pi$ and $k \gg 0$, then for $t \gg 0$, we have

- 1. $D(t) \leq \delta$;
- 2. If $\omega_i > \omega_j$, then $\theta_i(t) \ge \theta_j(t)$.

Numerical Experiments

Correctly validate our results.

Synchronization

Phase synchronization

$$\lim_{t\to\infty} (\theta_i(t) - \theta_j(t) - 2k_{ij}\pi) = 0, \ \forall i, j.$$

Frequency synchronization

$$\lim_{t\to\infty} (\dot{\theta}_i(t) - \dot{\theta}_j(t)) = 0, \ \forall i, j.$$

Main Results (Informal)

"Competition leads to synchronization."

Consider the ReLU-Sin coupling:

 $N = 10, \omega_i = 0, D(0) = 0.265, k = 0.5$

 $N = 10, \omega_i \in [-1, 0], D(0) = 0.255, k = 1.967$

$$\Gamma(t) = k \max\{0, \sin(t)\}, k > 0.$$

Let
$$D(t) := \max_{i,j} |\theta_i(t) - \theta_j(t)|$$
.

1. *Phase synchronization* if $D(0) < \pi$ and oscillators are identical ($\omega_1 = \cdots = \omega_N$).

2. Frequency synchronization if $D(0) < \pi$ and $k \gg 0$. Moreover, $\dot{\theta}_i(t) \rightarrow \max \omega_i$.

Other Results

Suppose Γ is odd and analytic and the oscillators are identical. Then, they achieve *frequency synchronization*.