Improved Dimension and Sample Size Scalability for Maximum-Likelihood State Tomography and **Approximating PSD Matrix Permanents**

Chung-En Tsai, Hao-Chung Cheng, and Yen-Huan Li (National Taiwan University)

We propose the currently fastest stochastic algorithm for maximumlikelihood quantum state tomography, in both theory and practice.

Optimization Problem

Technical Contributions

1. Generalized smoothness:

$$\rho^{\star} \in \operatorname*{argmin}_{\rho \in \mathscr{D}_d} \left\{ F(\rho) \coloneqq \frac{1}{n} \sum_{i=1}^n f_i(\rho) \right\},$$
$$f_i(\rho) \coloneqq -\log \operatorname{tr}(A_i \rho).$$

Applications: Maximum-likelihood quantum state tomography (MLQST), PSD matrix permanent approximation, Poisson inverse problem.

Algorithm: B-sample LB-SDA

When n and d are large, e.g., $n=\Omega(d^3)$ in MLQST, stochastic gradient-based

$$\|\nabla F(\rho) + \alpha I\|_{\rho,*}^2 \le 4(F(\rho) - F(\rho^*)).$$

2024 TAIPEI

2. A local-norm-based analysis of the online-to-batch conversion.

Time Complexity Comparison

The fastest when n is large.

Find $\hat{\rho}$ s.t. $F(\hat{\rho}) - F(\rho^{\star}) \leq \varepsilon$.	$2 \le \omega < 2.372.$
---	-------------------------

Algorithms	Time complexity (\tilde{O})
<i>d</i> -sample LB-SDA	d^3/ε^2

methods are preferred.

- 1: $h(\rho) := -\log \det \rho$.
- 2: $\rho_1 = I/d$.
- 3: for all $t \in \mathbb{N}$ do
- Output $\bar{\rho}_t := (1/t)\rho_{1:t}$. 4:
- Randomly pick $i_1, \ldots, i_B \in [n]$. 5: 6: $g_t = (1/B) \sum_{h=1}^{B} \nabla f_{i_h}(\rho_t).$

7:
$$\eta_t = O\left(\sqrt{d} / \sqrt{\sum_{\tau=1}^t \|g_\tau + \alpha_\tau I\|_{\rho_\tau,*}^2}\right).$$

 $\rho_{t+1} \in \operatorname{argmin} \eta_t \operatorname{tr}(g_{1:t}\rho) + h(\rho).$ 8: $\rho \in \mathscr{D}$

SQSB, SQLBOMD	$d^{\omega+1}/\varepsilon^2$
QEM	$(nd^2 + d^\omega)/\varepsilon$
Newton's method	$(nd^{\omega} + d^{2\omega})\log\log(1/\varepsilon)$
EMD, Diluted iMLE	Asymptotic
GD, SGD, iMLE	May not converge

Numerical Experiments

The fastest in terms of the fidelity between the iterates and the true state.

MLQST with $d = 2^6$, n = 409,600.

9: end for

Non-Asymptotic Convergence

Challenge: The problem violates standard smoothness assumption.

$$\mathsf{E}\left[F(\bar{\rho}_t) - F(\rho^*)\right] \leq \tilde{O}\left(\frac{d}{t} + \frac{\sqrt{d}}{\sqrt{Bt}}\right).$$