
When n and d are large, e.g., n=Ω(d3) in 
MLQST, stochastic gradient-based 
methods are preferred.
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Optimization Problem

We propose the currently fastest stochastic algorithm for maximum-
likelihood quantum state tomography, in both theory and practice.

Algorithm: B-sample LB-SDA

1: h(ρ) :=− logdetρ.
2: ρ1 = I /d .
3: for all t ∈N do

4: Output ρ̄t := (1/t )ρ1:t .
5: Randomly pick i1, . . . , iB ∈ [n].
6: gt = (1/B)

∑B
b=1∇ fib

(ρt ).
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.

8: ρt+1 ∈ argmin
ρ∈D

ηt tr
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+h(ρ).

9: end for

Time Complexity Comparison

Numerical Experiments

The fastest when n is large.

Algorithms Time complexity (Õ)

d-sample LB-SDA d 3/ε2

SQSB, SQLBOMD dω+1/ε2

QEM (nd 2
+dω)/ε

Newton’s method (ndω
+d 2ω) loglog(1/ε)

EMD, Diluted iMLE Asymptotic

GD, SGD, iMLE May not converge

Find     s.t. .                         .F (ρ̂)−F (ρ⋆) ≤ ερ̂ 2 ≤ω< 2.372

The fastest in terms of the fidelity 
between the iterates and the true state.

MLQST with                                   .d = 26,n = 409,600

1. Generalized smoothness:
Technical Contributions

∥∇F (ρ)+αI∥2
ρ,∗ ≤ 4

(

F (ρ)−F (ρ
⋆

)
)

.

Applications: Maximum-likelihood 
quantum state tomography (MLQST), 
PSD matrix permanent approximation, 
Poisson inverse problem.

Challenge: The problem violates 
standard smoothness assumption.
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Non-Asymptotic Convergence

2. A local-norm-based analysis of the 
online-to-batch conversion.


