Data-Dependent Regret Bounds for Online Portfolio Selection

Chung-En Tsai, Ying-Ting Lin, and Yen-Huan Li

National Taiwan University

chungentsai@ntu.edu.tw

Contributions

- First data-dependent bounds for OPS and for non-Lipschitz, non-smooth losses.
- Novel smoothness characterizations of log-loss.

onsmooth Optimization and Applications

•A general analysis of optimistic FTRL with self-concordant

Properties of the Log-Loss

Lemma ("Lipschitz continuity" and "Smoothness"). For any $x, y \in ri \Delta$, we have

 $\|\nabla f_t(x)\|_{x,*} \leq 1,$

Workshop on

regularizers, which are not necessarily barriers. • Current theoretically fastest stochastic method for minimizing expected log-loss [1].

"The single most iconic online learning problem."

At the *t*-th round, **1. INVESTOR chooses a portfolio** $x_t \in \Delta$; 2. MARKET announces a price relative $a_t \in [0, \infty)^d$; **3. INVESTOR suffers** a loss $f_t(x_t) := -\log \langle a_t, x_t \rangle$.

• Goal: minimize Regret $_T := \sum_{t=1}^T f_t(x_t) - \min_{x \in \Delta} \sum_{t=1}^T f_t(x)$. •Assumption (does not affect Regret_T): $||a_t||_{\infty} = 1$ for all t.

$$\|x \odot \nabla f_t(x) - y \odot \nabla f_t(y)\|_2 \le 4 \|x - y\|_{x,x}$$
$$\min_{\alpha \in \mathbb{R}} \|\nabla f_t(x) + \alpha \mathbf{1}\|_{x,x}^2 \le 4 \left(f_t(x) - \min_{x \in \Delta} f_t(x) \right)$$

where $||v||_{x,*} := \langle v, \nabla^{-2}h(x)v \rangle^{1/2}$ and $h(x) := \sum_{i=1}^{d} -\log x(i)$.

Tools. Relative smoothness of *f*_t and self-concordance of *h*.

The third inequality can be derived from geodesic smoothness of f_t w.r.t. the Poincaré metric $\langle u, v \rangle_x := \langle u, \nabla^2 h(x) v \rangle$ on Δ .

First Data-Dependent Bounds

heorem. There exist two algorithms that satisfy	
$Regret_T \leq O\left(d\log^2 T + \sqrt{dL_T^\star}\log T\right)$	(1)
$Regret_{T} \leq O\left(d\log T + \sqrt{dV_{T}}\log T\right),$	(2)

respectively, where

Challenges

• Lack of Lipschitz continuity and smoothness.

• Lipschitz continuity and smoothness are standard assumptions to obtain sub-linear worst-case regret and datadependent bounds, respectively.

Existing Algorithms

Algorithms	Regret _{T} Bound (\tilde{O})		Dor-round time (\tilde{O})	
	Best case	Worst case	rei iounu time (0)	
ÊĞ	$d^{1/3}T^{2/3}$		d	
BSM, Soft-Bayes, LB-OMD	\sqrt{dT}		d	
This work	$d \log^2 T$	\sqrt{dT}	d	
This work	d log T	\sqrt{dT}	d	
BISONS	$d^2 \log^2 T$		<i>d</i> ³	
PAE+DONS	$d^2 \log^5 T$		<i>d</i> ³	
VB-FTRL	d log T		d^2T	
LB-FTRL without linearized losses	$d\log^{d+1} T$		d ² T	
ADA-BARRONS	$d^2 \log^4 T$		d ^{2.5} T	
UPS	d log T		$d^{4}T^{14}$	

$L_T^{\star} := \min_{x \in \Delta} \sum_{t=1}^{t} f_t(x), \quad V_T := \sum_{t=2}^{t} \| \nabla f_t(x_{t-1}) - \nabla f_{t-1}(x_{t-1}) \|_{x_{t-1},*}^2.$

Implicitly Defined Optimistic LB-FTRL

At the *t*-th round, pick $p_{t+1} \in -\Delta$ and solve

 $\begin{cases} x_{t+1} \odot \hat{g}_{t+1} = p_{t+1}, \\ x_{t+1} \in \operatorname{argmin}_{x \in \Delta} \eta_t \left\langle \sum_{\tau=1}^t \nabla f_\tau(x_\tau) + \hat{g}_{t+1}, x \right\rangle + h(x). \end{cases}$

Theorem. (x_{t+1}, \hat{g}_{t+1}) can be solved in $\tilde{O}(d)$ time.

Examples.

• Eq. (1):
$$p_{t+1} = 0$$
 and $\eta_t = O\left(\frac{\sqrt{d}}{\sqrt{\sum_{\tau=1}^t \min_{\alpha \in \mathbb{R}} \|\nabla f_{\tau}(x_{\tau}) + \alpha \mathbf{1}\|_{x_{\tau},*}^2}}\right)$
• Eq. (2): $p_{t+1} = x_t \odot \nabla f_t(x_t)$ and $\eta_t = O\left(\sqrt{d}/\sqrt{V_t}\right)$.

Implication for Minimizing Log-Loss

• Minimax regret: $\min_{all algorithms} \max_{a_1,...,a_T} \operatorname{Regret}_T = \Theta(d \log T)$.

Current theoretically fastest stochastic method [1].

Consider $\min_{x \in \Delta} \{F(x) := \mathbf{E}_a[-\log \langle a, x \rangle]\}$. Assume the stochastic first-order oracle \mathcal{O} satisfies $\mathbf{E}_{\xi} \| \mathcal{O}(x; \xi) - \nabla F(x) \|_{x,*}^2 \leq \sigma^2$.

Theorem. There exists a stochastic algorithm satisfying

$$\mathbf{E}\left[F(\bar{x}_{T}) - \min_{x \in \Delta} F(x)\right] \leq O\left(\frac{d\log^{3} T}{T} + \frac{\sigma\sqrt{d}\log T}{\sqrt{T}}\right)$$

with $\tilde{O}(d)$ per-iteration time.

This matches convergence rate of SGD for minimizing smooth functions, regardless of the non-smoothness of the log-loss.

Workshop on Nonsmooth Optimization and Applications, **NOPTA 2024**, 8-12 April 2024, University of Antwerp, Belgium