Data-Dependent Bounds for Online Portfolio Selection Without Lipschitzness and Smoothness

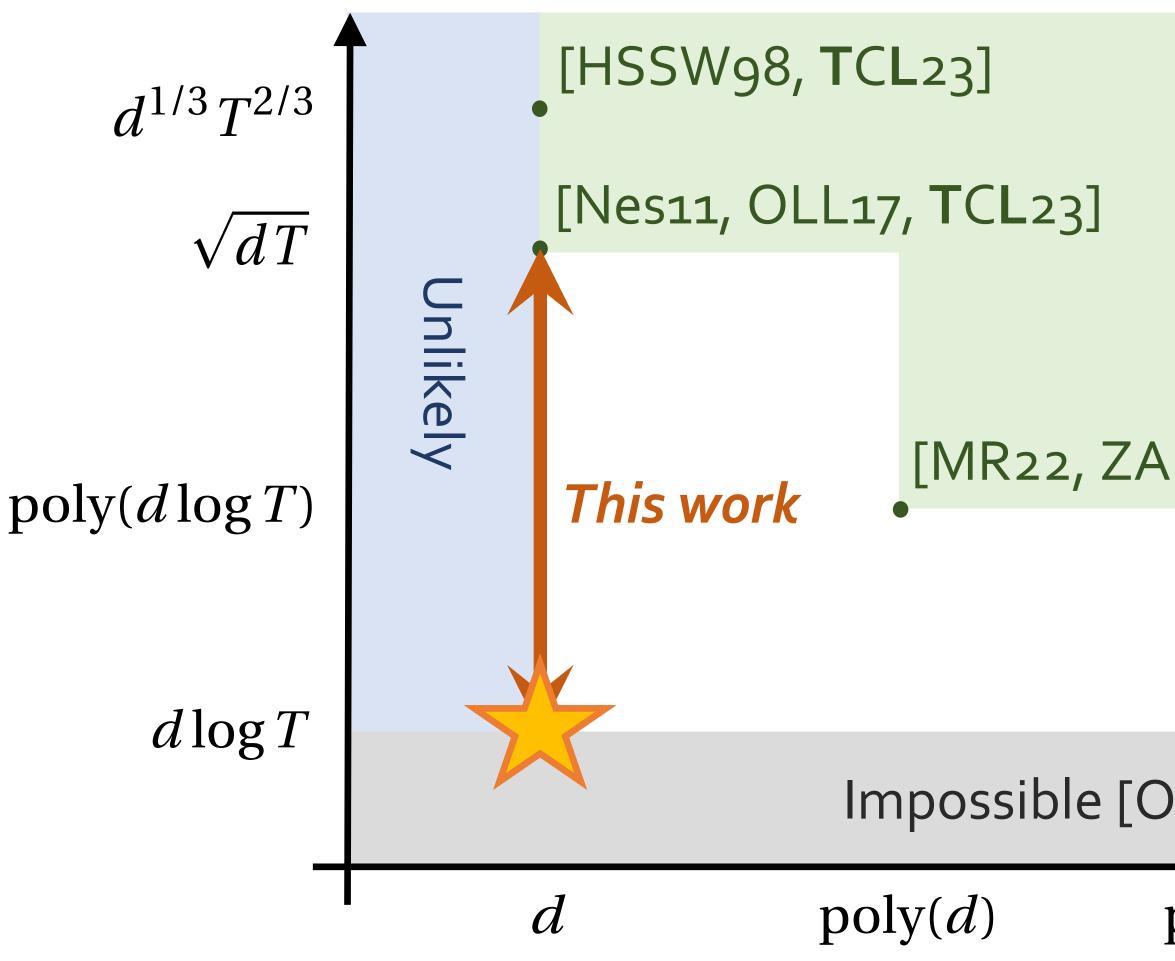
Chung-En Tsai, Ying-Ting Lin, Yen-Huan Li (National Taiwan University)

Contributions

- First data-dependent bounds for OPS.
- First data-dependent bounds for non-Lipschitz, non-smooth losses.
- Novel smoothness characterizations of log-loss.
- An implicitly defined optimistic LB-FTRL.
- A general analysis of Optimistic FTRL (OFTRL)
 with self-concordant regularizers.

The Holy Grail: Achievability of

Regret bounds



Online Portfolio Selection (OPS)

 <i>"The single most iconic online learning problem."</i> At the <i>t</i>-th round, 1. Investor chooses a portfolio x_t ∈ Δ_d; 2. Market reveals a price relative a_t ∈ [0,∞)^d;
3. Investor suffers $f_t(x_t) \coloneqq -\log \langle a_t, x_t \rangle$. • Regret: $R_T(a_{1:T}) = \sum_{t=1}^T f_t(x_t) - \min_{x \in \Delta_d} \sum_{t=1}^T f_t(x)$.
? Why is OPS challenging?
Lipschitzness and smoothness are standard assumptions to obtain sublinear worst-case regrets and data- dependent bounds. However, OPS violates both.
AK22]
[LWZ18] [JOG22] [Cov91]
Per-round time $poly(d)T poly(dT)$

First Data-Dependent Bounds

There exist two algorithms satisfying

$$R_T(a_{1:T}) \le O\left(d\log^2 T + \sqrt{dL_T^*}\log T\right)$$
$$R_T(a_{1:T}) \le O\left(d\log T + \sqrt{dV_T}\log T\right),$$

respectively, where

 $x_{t+1} \circ \hat{g}_{t+1} = p_{t+1}.$

$$L_T^{\star} \coloneqq \min_{x \in \Delta_d} \sum_{t=1}^T f_t(x) - \sum_{t=1}^T \min_{x \in \Delta_d} f_t(x)$$
$$V_T \coloneqq \sum_{t=2}^T \max_{x \in \Delta_d} \|\nabla f_t(x) - \nabla f_{t-1}(x)\|_{x,s}^2$$

Smoothness Characterizations

$$\begin{split} &x \circ \nabla f_t(x) - y \circ \nabla f_t(y) \big\|_2 \leq 4 \|x - y\|_x \\ &\nabla f_t(x) + \alpha_x \left(\nabla f_t(x) \right) \mathbf{1} \big\|_{x,*}^2 \leq 4 \left(f_t(x) - \min_{y \in \Delta_d} f_t(y) \right). \end{split}$$

Implicitly Defined LB-OFTRL

Let $h(x) \coloneqq \sum_{i=1}^{d} -\log x(i)$ be the log-barrier. Choose $p_{t+1} \in -\Delta_d$ and solve (x_{t+1}, \hat{g}_{t+1}) : $\begin{cases} x_{t+1} \in \operatorname*{argmin}_{x \in \Delta_d} \sum_{\tau=1}^{t} \langle \nabla f_{\tau}(x_{\tau}), x \rangle + \langle \hat{g}_{t+1}, x \rangle + \frac{1}{\eta_t} h(x) \end{cases}$